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Abstract. Building new power lines is required to satisfy increasing demands for the transmission of

electricity, and at the same time the road network is expanding. To provide guidelines for the routing of

new power lines and roads, it is essential to test whether linear features deter or attract movements of

animals in different landscape settings. Using GPS relocation data from 151 moose (Alces alces L.) in central

Norway, we tested for barrier and corridor effects of roads, power lines and rivers and accounted for forest

cover, the topographical orientation of linear features and the placement of other nearby linear features. We

predicted step selection probabilities for different movement options at varying distances from linear

features and linear feature combinations. Barrier and corridor effects of linear features altered moose

movements, although effects were minor compared to the effects of topography and forest cover. Moose

did not avoid crossing power lines, unless the placement of power lines along contour lines impeded

movements across them. In contrast, moose avoided crossing of roads and rivers in forests. Moose more

likely moved along linear features when getting closer to linear features. Barrier and corridor effects were

higher for road/river combinations compared to single linear features. Likewise, the barrier and corridor

effects were higher for road/power line combinations, but not power line/river combinations compared to

single linear features, when moose were close to the edge of those features. The inconsistent pattern could

be due to the low sample size. We found indications of higher disturbance potential of roads compared to

power lines and rivers. Managing vegetation in power line rights-of-way to provide abundant browse

could counteract possible disturbance, while wildlife overpasses could mitigate road fragmentation effects.
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INTRODUCTION

Building new power lines is required to

transport the increasing electricity produced by

renewable energy sources (REN21 2013), at the

same time as the road network is expanding (The

World Bank 2012). Investments of 70 billion € in

Europe (European Commission 2011) and ;4.5

billion € (40 billion NOK) in Norway alone

(Statnett SF 2010) are expected to be necessary

for onshore electricity transmission systems until

2020. In Norway, circa 200–300 km of new power

lines will be constructed per year until 2020

(Statnett SF 2010). Road densities have been

increasing in 70% of countries with road density

data available between 2005 and 2010 (The

World Bank 2012). To provide guidelines for the

routing of new power lines and roads, it is
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essential to test whether linear features deter or
attract movements of animals. These effects may
be influenced by their disturbance potential, the
surrounding landscape and other linear features
in the same area.

Allowing movement of animals among frag-
ments is important to maintain overall popula-
tion productivity in fragmented landscapes
(Pulliam 1988, Burkey 1989, Dias 1996), which
may otherwise decline due to environmental and
demographic stochasticity, and genetic effects in
local sub-populations (Lacy and Lindenmayer
1995). Wide-ranging ungulates can in particular
be expected to be vulnerable to fragmentation of
their habitat (Bartzke et al. 2014). Migratory
ungulate movements may enhance production of
offspring (Rolandsen et al. 2012), possibly facil-
itated by seasonal use of habitats (Bjørneraas et
al. 2011). Moreover, increasing area use through
movements may compensate for reduced re-
sources caused by habitat loss, such as decreased
food availability (van Beest et al. 2011) and
habitat productivity (Bjørneraas et al. 2012).

Roads, power lines and water bodies such as
canals and rivers may potentially act as barriers
(Joyal et al. 1984, Vistnes et al. 2004, Epps et al.
2005, Laurian et al. 2008) or corridors (Brown et
al. 2006, Latham et al. 2011) for movements.
Ungulates may be less likely to use or move
through areas with high development of human
infrastructure (Nellemann et al. 2003, Vistnes et
al. 2004, Sawyer et al. 2012), and ungulate
migrations have been reported to decline global-
ly along with increasing human encroachment
(Harris et al. 2009). Curatolo and Murphy (2002)
found that caribou (Rangifer tarandus L.) avoided
crossing pipelines paralleled with roads but did
not avoid crossing single pipelines or roads. This
raises the question if we should avoid building
new power lines and roads along existing linear
features because it could make such barriers less
permeable. Alternatively, this may be a good
strategy as it avoids splitting remaining habitat
fragments into smaller pieces.

Animals may move along linear features
because: (1) they avoid crossing them (Vanak et
al. 2010), (2) linear features are aligned along
preferred travel routes (Kie et al. 2005, Brugge-
man et al. 2007), (3) animals find favorable
foraging or cover habitats along linear features
(Dusek et al. 1989, Eldegard et al. 2012, Bartzke et

al. 2014) or (4) reduced snow cover along linear
features facilitates easy travel in winter (Collins
and Helm 1997). However, while power lines,
roads and rivers all tend to follow lower
elevation ranges and provide foraging opportu-
nities along edges (Mould 1979, Ricard and
Doucet 1999, Rea 2003), they may have different
disturbance potential (Flydal et al. 2009, Mont-
gomery et al. 2012). Rivers may for instance
impede ungulate movements because of the
physical constraints to overcome such features
(Coulon et al. 2006), but rivers should not be
disturbing.

Barrier and corridor effects could also result in
a concentration of animals near linear features.
As a consequence, accumulation of ungulates
near linear features may have societal and
economic impacts through increased ungulate-
vehicle collisions on roads (Seiler 2005, Kenneth
2007), forest damage due to high browsing
pressure (Storaas et al. 2001, Edenius et al.
2002), but also reduced need for power line
rights-of-way (ROW) clearing and higher sales of
hunting licenses (Storaas et al. 2001).

In this study, we compared differential barrier
and corridor effects of power lines, roads and
rivers on the movements of a large herbivore, the
moose (Alces alces L.), and tested if the placement
of different linear features in the same area altered
crossing ability and travel direction. We selected
moose in Norway as our model species for
ungulates (e.g., red deer Cervus elaphus L., roe
deer Capreolus capreolus L.) because moose move
over large areas (Bunnefeld et al. 2011, Bjørneraas
et al. 2012) and are therefore likely to encounter
such features in isolation and in combination with
each other in different landscape settings. We also
had an extensive dataset available for this species.
The willingness of moose to cross roads and
power lines may be influenced by the surround-
ing forest cover (Forman et al. 2003), the
disturbance caused by road traffic (Alexander et
al. 2005) or the noise and visual distraction of
power lines (Flydal et al. 2010). We included rivers
for comparison with anthropogenic features, and
because roads are often routed along rivers.

Based on the known reluctance of moose to
cross roads (Dussault et al. 2007, Laurian et al.
2008, Beyer et al. 2013), as well as the potential
disturbance effect of power lines and movement
constraints of rivers, we hypothesized that moose
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would show reluctance to cross central-grid
power lines, roads and rivers, and that these
features would rather channel moose movement
through the landscape. Among the three features,
we predicted power lines to have the least barrier
and corridor effects because they provide brows-
ing opportunities and can be easily traversed
(P1). Conversely, roads were predicted to have
the largest effects because of the disturbance
through traffic and other human activity (P2). We
predicted combinations of linear features to
reduce the probability of crossing and increase
the corridor effect even further than for single
linear features because of the cumulative barrier
effects (P3).

METHODS

Study area
The study area (648300 N, 128500 E, 28,500 km2)

was situated in the county of Nord-Trøndelag

and adjacent municipalities in central Norway
(Fig. 1). The study area is dominated by spruce
forest interspersed with mire, agriculture at
lower elevations and open alpine areas. The
elevation ranges from the coast to 1,760 m above
sea level (asl). Moose can be found throughout
the entire area outside urban settlements and
below the climatic tree line (at on average 600 m
asl; Moen et al. 1999).

We extracted and merged all public roads, i.e.,
highways, national roads, county roads and
municipal roads, from a road database (Norwe-
gian Mapping Authority 2012b) regardless of
traffic intensity. The Norwegian central grid
operator Statnett provided routing data of power
lines. A clear-felled corridor with a width of 32–
38 m, typical for voltages between 220 and 420
kV (Bevanger and Thingstad 1988), surrounded
these power lines. We retrieved major rivers from
polygon maps from the Norwegian Water
Resources and Energy Directorate (2011) and

Fig. 1. Study area in the county of Nord-Trøndelag, central Norway. GPS relocation data (2006–2010) of 151

moose (circles) was used to study corridor and barrier effects of power lines (double line), roads (thick grey lines)

and rivers (thin grey lines) as well as linear feature combinations on moose movements.
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removed inflows and lakes by clipping river
polylines with river polygons from land cover
maps (Norwegian Mapping Authority 2012a). In
total, 5,113 km roads, 770 km central-grid power
lines and 2,658 km rivers were traversing
potential moose ranges, i.e., outside urban
settlements and below 600 m elevation, in the
study area.

The average elevation of roads (131 m 6 131
SD), central-grid power lines (284 m 6 136 SD)
and rivers (229 m 6 167 SD) was below the
average elevation of the study area (322 m 6 165
SD), i.e., the potential moose ranges. There were
also 1,184 km of low voltage power lines in the
area (Norwegian Water Resources and Energy
Directorate), but they were not included because
of inaccurate routing data. These low-voltage
power lines were on average 1.0 (61.2) km away
from roads and 2.3 (62.4) km away from rivers.

Moose data
In total 169 moose were captured between

February 2006 and March 2008 and equipped
with GPS collars of the types GPS PLUS/GPS Pro
Light (Vectronic Aerospace, Germany) and GPS
Tellus (Followit Lindesberg AB, former Televilt,
Sweden). This was done as a part of a moose field
research project aiming to increase the knowl-
edge of moose ecology in the study area and to
strengthen the basis for local and regional moose
management (Rolandsen et al. 2010). We then
followed the movement of each animal over
various time spans (depending on battery life
and collar/radio durability) to the end of 2010.
Erroneous relocations were removed by employ-
ing the method of Bjørneraas et al. (2010). Only
relocations were included in the analyses that
were on Norwegian mainland further than five
kilometers away from the Swedish border to
minimize influence of unknown features outside

Norway as well as restricted of movements on
islands. To minimize bias following capture and
to standardize the analysis only individuals with
at least 1,000 relocations in hourly intervals were
included, whereby only steps of more than 10 m
length were considered to represent movements.

Previously, Bartzke et al. (2014) used the same
dataset to analyze step selection towards roads
and power lines following Fortin et al. (2005). In
that study, we matched five random movement
steps, generated from the empirical distribution
of step lengths and turning angles, to each
observed moose movement step (i.e., choice
set). Here, we used the same dataset and selected
all choice sets containing steps that ended at least
2.5 km away from urban settlements to minimize
the influence of human activity close to linear
features. We further selected choice sets contain-
ing steps with midpoint distances below 2 km
from any linear feature assuming that moose do
not respond to the features beyond this distance.
Moose response distances to roads reported by
Laurian et al. (2008) (500 m), Laurian et al. (2012)
(100–250 m) and Bartzke et al. (2014) (1000 m)
indicate that this assumption is reasonable. Since
only two observed steps crossed three different
linear features at the same time we removed
choice sets of steps containing such crossings.
After selection, 151 individuals remained for
analysis with on average 3,120 (62,356 SD) steps
per individual. Moose relocations used to derive
movement steps were found at on average 258
(6148 SD) m asl. Most individuals (79–86%)
within 2 km from the nearest linear feature were
also found at least once less than 25 m from or
crossed the respective feature. Less than 10% of
the selected individuals never crossed the re-
spective linear feature or entered a buffer below
500 m from that feature (Table 1).

Candidate models and covariates
We started with a ‘‘Basic model’’, including

forest to account for moose’s known preference
for forest (Bjørneraas et al. 2011, Bjørneraas et al.
2012), elevation to account for avoidance of
alpine areas and lowland agricultural areas
outside the growing season (Bjørneraas et al.
2011), and distance in interaction with the closest
linear feature type to separate between responses
towards or away from different linear features.
Steps where more than half of the step lengths

Table 1. Count of individual moose with midpoint

distances of steps below 2 km from different linear

features, as well as those that crossed or were found

within respectively 500 m and 25 m from the

respective linear feature in central Norway.

Type N,2000 N,500 N,25

Roads 145 136 114
Power lines 51 47 44
Rivers 127 125 101
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fell within the forest map from the Norwegian
Forest and Landscape Institute (Gjertsen 2007),
converted into 303 30 m raster, were considered
to traverse forest. Elevation at the end point of
movement steps was derived from a 25 3 25 m
DEM raster. Distances to different linear features
at the midpoint of movement steps were derived
from 10310 m distance rasters created in ArcGIS
10 (ESRI 2011). We included quadratic terms for
elevation and distance as we expected non-linear
effects in these (Fortin et al. 2005, Laurian et al.
2012, Bartzke et al. 2014). We also included the
maximum elevation difference along steps, be-
cause we anticipated that moose avoid moving
across terrain with altering elevation to save
energy (Parker et al. 1984). To reduce bias in step
selection due to the distance moved (Hjermann
2000), we followed the suggestion of Forester et
al. (2009) and included step length as a covariate
(also see May et al. 2010). Longer steps more
likely cross linear features (Eftestøl et al. 2014)
and can induce stronger changes in selection. By
including step length as a covariate we account
for changes in movement activity that may
influence selection through factors like habitat,
time of the day or season.

We then developed three additional candidate
models defined as the Basic model plus barrier or
corridor effects, or both. We defined barrier
effects as the reluctance by moose to cross linear
features. Likewise, corridor effects were prefer-
ences for moving along linear features over
moving away or towards them. We expected
the willingness of moose to cross or move along
linear features to vary with distance to linear
features, forest, and the topographical orientation
of linear features, and assigned these covariates
to steps. Linear features were considered crossed
when steps intersected one or two linear features.
We added crossings of different linear feature
types, including their interactions with forest,
distance to linear features and the orientation of
linear features along contour lines (‘‘Barrier
model’’). Orientation along (versus across) con-
tour lines was defined as the angle between
crossed linear feature(s) and closest elevation
contour line segment below 458. Acute segment
angles were calculated by splitting linear features
and elevation contour lines within 1 km from
linear features into 25 m long segments in
Secondo (Secondo Team, Department of Com-

puter Science, FernUniversität Hagen, Hagen,
North Rhine-Westphalia, Germany). Because less
than 250 observed steps crossed several linear
features with one movement step, we disregard-
ed interactions with these types of crossing. We
developed a ‘‘Corridor model’’ including move-
ment orientation (moving along versus towards/
away from linear features), and with the same
interactions as the Barrier model. Movement
along linear features was defined as acute angles
between feature segment and movement step
below 458. Two linear feature segments were
considered combined when they were less than
250 m apart (length weighted mean (H. L. Beyer,
available online: http://www.spatialecology.com/
gme/isectlinerst.htm) with an acute angle of less
than 458. Finally, we combined all three models
into a ‘‘Combined model’’ including besides the
Basic model also barrier and corridor effects and
their interactions. We made no explicit distinc-
tion between movements towards or away from
linear features, but accounted for such move-
ments by including distance to linear features as
a covariate in all statistical models. Step selection
for or against distance to linear feature indicates
whether moose preferred to approach (negative
selection for distance) or move away (positive
selection for distance). Such effects may become
stronger with decreasing distances to linear
features.

Modelling approach and model predictions
To determine if moose step selection is best

explained by barrier, corridor, a combination of
both or neither of these effects, we compared
model parsimony of the candidate models from
QIC (quasi-likelihood under independence crite-
rion) values. QIC values are similar to AIC
values (Akaike 1973) and decline with parsimo-
ny (Craiu et al. 2008). QIC were used because we
accounted for temporal autocorrelation among
steps by clustering steps over individuals (Fortin
et al. 2005). We checked whether individuals
were moving independently of each other by
calculating for each individual the percentage of
its steps within a range of 500 m and three hours
to each one of the other individuals. This
percentage was less than three for all individuals,
except 15 individuals that were up to 16% within
the given distance and time to one of the other
individuals.
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To find out if crossing probabilities of rivers
could have been influenced by ice cover, we also
applied the top-ranking model to a dataset
excluding the coldest period January-March. We
applied an equivalent model but excluding effects
of linear feature combinations to a dataset of that
period. All statistical analyses were done in R
version 3.1.0 (RDevelopmentCore Team2014).We
used a cox proportional hazard model (cph) from
the R-package rms version 4.2-0 (Harrell 2014) to
model step selection probabilities (Supplement).

From the most parsimonious model we pre-
dicted step selection probabilities following
Manly et al. (2002):

Pij ¼
expðb1 3 xij1 þ b2 3 xij2 þ :::þ bp 3 xijpÞ

P3
j¼1 expðb1 3 xij1 þ b2 3 xij2 þ :::þ bp 3 xijpÞ

:

ð1Þ

Step selection probability is the probability of
selecting movement step j at the ith choice over
three alternative movement steps dependent on
the coefficients bp and the environmental variable
xijp. The alternative movement options which
moose were assumed to select from near the edge
of linear features (25 m distance) were crossing,
moving along, or moving away from linear
features (Fig. 2). At distances of at least 100 m
from linear features, the alternatives were mov-

ing along, towards or moving away from linear
features, but not the option of crossing linear
features (Fig. 2). We assumed a step length of 100
m, which is approximately the mean step length
of observed movement steps (99 m 6 179 SD),
and adjusted distances to linear features accord-
ingly (Fig. 2). We assumed angles of 0 degrees
between steps and linear features for movements
along those features. Angles of 90 degrees were
assumed for steps that crossed, moved towards
or away from linear features (Fig. 2).

We predicted step selection probabilities for
movements along linear features irrespective of
the direction in which animals could move along
linear features. If animals were moving random-
ly, the probability of choosing one of three
movement options would be 0.33, providing that
other variables along steps are equal. We kept
step length, forest cover, elevation and maximum
elevation difference along steps at equal values
for the three movement options. We defined
avoidance or attraction to be a step selection
probability below or above 0.33.

RESULTS

Model selection
The most parsimonious model explaining

moose step selection included the effects of

Fig. 2. Moose movement options in response to linear features. The probability of crossing linear feature(s)

(upper double line) over moving along (thin lines) or away from (thick line) linear feature(s) were predicted for

situations when moose were in close enough proximity to cross linear features (25 m, close to the edge), assuming

a step length of 100 m. At further distances (�100 m) the three possible options were moving towards (lower

double line), along (thin lines) or away from (thick lines) linear features without the option to cross linear

features.
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distance to linear features, as well as barrier and
corridor effects (the Combined model: QIC ¼
1,674,272). Although the other three models all
had DQIC values .2, the difference in parsimony
between the Combined model and the Barrier
model was smallest (DQIC ¼ 136) compared to
the Corridor (DQIC ¼ 1,417) or Basic model
(DQIC ¼ 1,649).

Significance of selected variables
In general, moose avoided crossing linear

features and linear feature combinations (P ,

0.05), except for power lines and power line/river
combinations, while they preferred moving
along roads and road/river combinations (P ,

0.05). Moose avoided steps towards linear
features and more so when the closest linear
feature was a road, indicated by a significant
interaction of distance and roads. Apart from the
effects of linear features, moose avoided steps
traversing predominantly open habitats and
steps along relatively steep terrain (elevation
difference) (P , 0.001). Moreover, they avoided
low elevations (P , 0.001) that were probably
associated with high human activity. The full
model is listed in Appendix A.

Predictions of crossing versus other movements
in close proximity to linear features

A deviation from a step selection probability of
0.33 in Tables 2 and 3 indicates that those
movement steps were non-random and influ-
enced by linear features. In forests, moose
avoided crossing roads and rivers. Instead they
preferred to move along or away from these
linear features in forest. Moose avoided crossing
and preferred moving along power lines in
forests when those were aligned along contour
lines. In open habitat when linear features were
aligned along the contour lines, moose seemingly
preferred to cross roads, while they moved along
power lines and rivers. When not aligned along
contour lines, moose crossed linear features in
open habitat. Moose less likely crossed and more
likely moved along or away from road/power
line and road/river combinations compared to
single linear features (Table 3). In contrast, moose
most likely crossed and least likely moved along
power line/river combinations (Table 3). During
winter, moose more likely crossed roads in open
habitat compared to the rest of the year (Tables
B1 and B3 in Appendix B). Moose refrained more
from crossing power lines during winter in open

Table 2. Predicted step selection probabilities (P) from Eq. 1 and sample size (no/nr) for moose crossing, moving

along or away from roads (Rd), power lines (Pl), rivers (Ri) in response to forest versus open habitat and the

alignment of linear features along contour lines in central Norway.

Statistics

Crossing Moving along Moving away�

Rd Pl Ri Rd Pl Ri Rd Pl Ri

Forest habitat
Not aligned to contours
P 0.23 0.35 0.26 0.39 0.33 0.37 0.38 0.33 0.37
no 374 567 290 23,606 7,104 12,966 22,401 7,235 12,257
nr 2,327 2,014 1,482 56,608 18,504 30,674 51,538 16,418 27,997

Aligned to contours
P 0.22 0.26 0.23 0.40 0.39 0.39 0.38 0.35 0.37
no 1,409 606 1,207 84,778 11,395 62,713 76,068 9,512 56,086
nr 10,059 2,969 7,021 171,475 25,084 124,626 165,632 22,947 121,577

Open habitat
Not aligned to contours
P 0.37 0.39 0.34 0.32 0.30 0.33 0.32 0.31 0.33
no 374 13 86 2,536 198 1,238 2,454 181 1,192
nr 1,265 57 348 8,605 921 4,274 7,781 829 4,033

Aligned to contours
P 0.35 0.30 0.31 0.33 0.36 0.35 0.32 0.34 0.34
no 764 14 230 6,740 403 4,420 6,098 384 3,878
nr 3,161 84 977 21,195 1,551 13,107 19,900 1,577 12,957

Notes: Predictions were made from the Combined model (Appendix A) testing for the effects of environmental variables as
well as barrier and corridor effects of linear features on step selection of 151 moose using GPS relocation data. A step selection
probability below 0.33 indicates avoidance. The sample sizes are choice sets containing different types of observed (no)/random
(nr) movement steps.

� The sample sizes (no/nr) are choice sets containing steps towards or away from linear features without crossing or moving
along them.
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habitat, especially when aligned along contour
lines, rather preferring to move along them. In
open habitats, moose were also less likely to cross
rivers during winter compared to the rest of the
year; they rather moved along or away from
those.

Prediction of step selection probabilities
with distance from linear features

Moose shifted from mostly moving towards
linear features to moving along or away from
linear features at distances below approximately 1
km, when linear features were not aligned along
contour lines (Fig. 3A, C, E, G, I, K). Moose re-
spondedmore strongly towards roads (Fig. 3A, C)
and power lines (Fig. 3E, G) than rivers (Fig. 3I, K),
indicated by the change in step selection probabil-
ities with distance from linear features.

Among linear features, moving along power
lines (Fig. 3E, G) was least preferred while
moving along roads (Fig. 3A, C) was most
preferred below approximately 1 km distance.
Moving along power lines became the most
likely movement option at approximately 100 m
distance to power lines in forests, when power
lines were not aligned along contour lines (Fig.
3E). Overall, moose more likely moved along
linear features in forests and those aligned along
contour lines (Fig. 3A–L).

Similar to single linear features, moose in-
creased movements along and reduced move-
ments towards linear feature combinations in
their proximity (Fig. 4A–C). Movements along
road/river combinations (Fig. 4A) and power
line/river combinations (Fig. 4C) were overall
more likely and extended over larger distances
compared to single linear features (Fig. 3A–L).

DISCUSSION

We analyzed movement preferences of 151
moose in central Norway and found differences
in barrier and corridor effects between roads,
power lines and rivers whilst accounting for
forest cover, elevation and the topographical
orientation of linear features. The comparison of
candidate models indicated that both barrier and
corridor effects of linear features affected moose
movements, although the effects were minor
compared to the effects of topography and forest
cover. The comparatively small reduction in
model parsimony when accounting for only
crossing compared to both crossing and moving
along linear features indicates that moose moved
along linear features partly because they avoided
crossing them.

Moose avoided crossing roads and rivers, but
not power lines, hence only partly supporting
our hypothesis. While the model predicted that
moose avoided crossing of roads and rivers only
in forests, previous studies have detected in-
creased probabilities for road crossings (Dussault
et al. 2007, Laurian et al. 2008) and accident with
vehicles (Seiler 2005) in forests. This apparent
contradiction, however, may be explained by a
general preference of moose for forests, thus
increasing the probability for crossing roads in
forests, rather than a higher preference for
crossing roads in forests itself. Possibly, the gap
created by linear features in forests prevents
moose from crossing them.

Browsing opportunities inside power line
ROWs may have reduced the reluctance of
moose to overcome these gaps. Similarly, Joyal
et al. (1984) found that moose did not avoid

Table 3. Predicted step selection probabilities (P) from Eq. 1 and sample size (no/nr) for moose crossing, moving

along or away from combinations of roads (Rd), power lines (Pl) and rivers (Ri) in central Norway.

Statistics

Crossing Moving along Moving away�

Rd/Ri Rd/Pl Pl/Ri Rd/Ri Rd/Pl Pl/Ri Rd/Ri Rd/Pl Pl/Ri

P 0.10 0.14 0.44 0.47 0.43 0.29 0.44 0.43 0.27
no 139 16 85 26,549 105 1,103 22,672 87 985
nr 2,319 85 280 51,521 268 2,228 49,296 214 2,092

Notes: Predictions were made from the Combined model (Appendix A) testing for the effects of environmental variables as
well as barrier and corridor effects of linear features on step selection of 151 moose using GPS relocation data. A step selection
probability below 0.33 indicates avoidance. The sample sizes are choice sets containing different types of observed (no)/random
(nr) movement steps. The feature in combinations assumed closest to steps is named first.

� The sample sizes are choice sets containing steps towards or away from linear feature combinations without crossing or
moving along them.
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crossing power line ROWs of 90 m width.
Avoidance of moving across terrain with varying
elevation may explain why moose avoided
crossing power lines when those were aligned
along contour lines. Correspondingly, moose-
vehicle collisions are less likely in areas with
high variation in elevation (Seiler 2005).

Although the model predicted that moose did
not avoid crossing linear features in open
habitats, they were less likely to move towards
them when being closer. This could prevent
moose from even getting close enough to cross
such features. Moose changed from moving

towards power lines and roads at a distance
above approximately 1 km, to moving away
from or along such features at lower distances.
As a result, moose may progressively abandon
areas close to linear features. Similarly, Panzacchi
et al. (2013) found that female reindeer (Rangifer
tarandus tarandus L.) reduced area use below
distances of 1 km from power lines and roads
while Laurian et al. (2008) showed that moose
home ranges increased with the density of roads
inside, possibly because they compensated for
reduced area use near roads.

Although power lines had the least barrier and

Fig. 3. Predicted step selection probabilities (Eq. 1) from a Combined model (Appendix A) for moose

movements along (straight lines), towards (dashed lines) and away (dotted lines) from roads, power lines and

rivers in relation to distance to linear features in central Norway. It was assumed that moose did not have the

option to cross linear features at a distance equal or above 100 m from linear features. Predictions were made for

movements in forests and open habitats and for situations when linear features were aligned along contour or

not. A step selection probability below 0.33 indicates avoidance.
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corridor effects when moose were in close
proximity as described by P1, we cannot rule
out a disturbance potential of power lines. Moose
changed their movements more strongly with
varying distances to power lines compared to
rivers. Moose may have reacted to the power line
structure or less preferred habitats surrounding
power lines. The strongest effects were found
near roads as described by P2, although other
human activities close to roads could also have
influenced this pattern (Lykkja et al. 2009).

Although most individuals came into close
proximity to linear features, a few (2–9%) were
never found closer than 500 m to linear features
during the study period. If and how moose
perceive linear features at a distance above 500 m
can be discussed, although empirical findings do
suggest an effect even at substantial distances
from roads. For instance, moose responded to
highways at distances up to 750 m in Canada
(Laurian et al. 2012). Surprisingly, even larger
response distances were reported for forest roads
(Jiang et al. 2009, Laurian et al. 2012). In Sweden,
moose moved faster only at distances below 125
m from roads, and not power lines (Neumann et
al. 2013). Response distances of most other
species towards roads were found to range from
less than 100 m up to approximately 1 km
(Forman et al. 2003: Fig. 11.6). Reindeer were
suspected to be disturbed by roads (Forman et al.
2003: Fig. 11.6) and power lines (Vistnes and
Nellemann 2001) up to distances of several
kilometers.

Moose may also have responded to environ-

mental variables other than linear features.
Neither roads, rivers or power lines are random-
ly distributed in the landscape, but are typically
found at lower elevations. Accordingly, most
moose habitats may be found at elevations
higher than the linear features, which could
affect the daily movement of moose, e.g., if
access to forage were higher at lower elevations
due to higher primary production. The average
elevation of power lines and rivers was similar to
that of moose relocations, but roads were
traversing lower areas. Hence, the tendency of
moose to move towards roads at distances above
1 km could be due to better feeding conditions at
lower elevations. Indeed, as the browsing pres-
sure is also likely to be lower, higher supply of
food may attract moose towards roads, particu-
larly during low disturbance periods (e.g., the
night; Lykkja et al. 2009).

We found increased barrier effects for simulta-
neous road/power line crossings and increased
barrier and corridor effects in road/river combi-
nations as described by P3. The predictions for
linear feature combinations including power
lines were however not consistent. Barrier and
corridor effects increased for power line/road
combinations, but the opposite was predicted by
the model for power line/river combinations
when moose were close to the edge of to those
features. A possible reason could have been our
inability to account for the topographical orien-
tation of linear feature combinations and forest
cover because of the low sample size.

Moreover, nearly 80% of power line/river

Fig. 4. Predicted step selection probabilities (Eq. 1) from a Combined model (Appendix A) for moose

movements along (straight lines), towards (dashed lines) and away (dotted lines) from road/river, road/power

line and power line/river combinations dependent on distance to the closest linear feature in central Norway. The

description is identical to Fig. 3.
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crossings occurred at only one location by one
individual. There was no spatial clustering for
other power line/river crossings. Thus the high
probability for simultaneous power line/river
crossing does not necessarily reflect the general
preference of the moose population in the study
area. Incorporating the effects of lower-voltage
power lines would have helped to clarify the
effects of power lines in combination with other
linear features, but unfortunately we had no
access to accurate routing data for lower-voltage
power lines.

Our results indicate that power lines do not
pose barriers to moose movements. In contrast,
Vistnes et al. (2004) concluded that power lines
pose migration barriers to reindeer, although this
conclusion has been challenged (Reimers et al.
2007). Being primarily adapted to forests, moose
are reluctant to use open areas (Bjørneraas et al.
2011), but probably to lesser extents when gaps
are small. The benefits of additional browsing
resources in power line ROWs may also out-
weigh the disadvantage of removing forest cover
and the possible disturbance of power lines to
moose. Managing power line ROWs in a way
that provides abundant browse could be the best
strategy to reduce possible aversion and barrier
effects (Joyal et al. 1984, Ricard and Doucet 1999).

Roads have a greater potential to reduce the
access of moose to seasonal feeding and cover
habitats (Seiler et al. 2003) and may pose
constraints on reproduction (Rolandsen et al.
2012) and genetic diversity (Epps et al. 2005,
Coulon et al. 2006). This study and the fact that
about 4,000 moose per year are involved in traffic
accidents in Norway (Rolandsen et al. 2011),
however, indicates that roads do not block moose
crossings entirely. Increasing the food availability
in the proximity of roads is not recommended, as
this may increase the risk of moose-vehicle
collisions (Rea 2003, Rea et al. 2010). Making
roads more penetrable, e.g., by creating over or
under passes (Olsson and Widen 2008), may
therefore be the only way of reducing the barrier
and corridor effects, at least for roads with heavy
traffic.

CONCLUSIONS

We compared barrier and corridor effects of
roads, rivers and power lines on movements of a

large herbivore, the moose, in central Norway.
We found that roads and combinations of roads
with other linear features had the strongest
effects. Moose more likely moved along linear
features when getting closer, although moved
randomly when in close proximity to power
lines. The results indicate that power lines do not
pose a barrier to moose movements, which
contrast to the barrier effects of linear forest
openings of roads and rivers.
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SUPPLEMENTAL MATERIAL

APPENDIX A

Table A1. Beta-coefficients, robust standard errors, Wald v2 and significance of variables of the Combined model

testing for the effects of environmental variables as well as barrier and corridor effects of linear features and

linear feature combinations on moose step selection in central Norway.

Variable b SE v2 P

Step length 1.4e�03 7.5e�05 359.7 ,0.001
Elevation difference �1.6e�02 9.2e�04 294.6 ,0.001
Forest ¼ no �3.4e�01 2.3e�02 222.8 ,0.001
Elevation 3.1e�03 6.4e�04 23.6 ,0.001
Elevation2 �4.0e�06 1.1e�06 14.5 ,0.001
Distance 3.9e�04 1.6e�04 5.8 0.016
Distance2 �2.1e�07 1.2e�07 3.1 0.078
Distance : feature type ¼ road 3.7e�04 1.3e�04 8.1 0.004
Distance : feature type ¼ river 6.4e�05 1.4e�04 0.2 0.654
Distance2 : feature type ¼ road �2.7e�07 1.2e�07 5.1 0.024
Distance2 : feature type ¼ river �3.1e�08 1.3e�07 0.1 0.810
Crossing type ¼ road �3.9e�01 6.9e�02 30.8 ,0.001
Crossing type ¼ power line 1.4e�01 1.5e�01 0.9 0.339
Crossing type ¼ river �3.1e�01 1.2e�01 6.1 0.013
Crossing type ¼ road & river �1.4eþ00 2.6e�01 26.6 ,0.001
Crossing type ¼ road & power line �1.1eþ00 2.3e�01 23.3 ,0.001
Crossing type ¼ power line & river 7.2e�01 3.0e�01 5.8 0.016
Forest : crossing type ¼ road 6.2e�01 6.8e�02 83.6 ,0.001
Forest : crossing type ¼ power line 1.4e�01 2.2e�01 0.4 0.510
Forest : crossing type ¼ river 3.9e�01 1.3e�01 8.4 0.004
Feature orientation : crossing type ¼ road �4.1e�02 6.6e�02 0.4 0.540
Feature orientation : crossing type ¼ power line �3.5e�01 1.1e�01 10.3 0.001
Feature orientation : crossing type ¼ river �1.1e�01 1.0e�01 1.1 0.284
DistanceCr : crossing type ¼ road �2.2e�03 3.4e�04 41.3 ,0.001
DistanceCr : crossing type ¼ power line �2.2e�03 5.6e�04 15.1 ,0.001
DistanceCr : crossing type ¼ river �1.0e�03 3.9e�04 7.1 0.008
DistanceCr : crossing type ¼ road & river �4.4e�03 1.3e�03 11.9 0.001
DistanceCr : crossing type ¼ road & power line 2.5e�03 1.9e�03 1.8 0.178
DistanceCr : crossing type ¼ power line & river �8.2e�03 1.3e�03 37.0 ,0.001
Corridor type ¼ road 7.1e�02 2.2e�02 10.5 0.001
Corridor type ¼ power line 2.7e�02 9.5e�02 0.1 0.779
Corridor type ¼ river 3.5e�02 3.1e�02 1.2 0.270
Corridor type ¼ road & river 1.0e�01 4.2e�02 5.9 0.015
Corridor type ¼ road & power line 4.8e�02 9.0e�02 0.3 0.593
Corridor type ¼ power line & river 8.4e�02 7.7e�02 1.2 0.276
Forest : corridor type ¼ road �2.6e�02 2.8e�02 0.8 0.369
Forest : corridor type ¼ power line �5.9e�02 5.8e�02 1.0 0.308
Forest : corridor type ¼ river �2.2e�02 2.7e�02 0.6 0.431
Feature orientation : corridor type ¼ road 2.5e�02 1.5e�02 2.9 0.088
Feature orientation : corridor type ¼ power line 1.0e�01 2.6e�02 16.3 ,0.001
Feature orientation : corridor type ¼ river 3.2e�02 2.4e�02 1.8 0.180
DistanceCo : corridor type ¼ road �6.6e�05 1.9e�05 12.1 0.001
DistanceCo : corridor type ¼ power line �1.0e�04 6.8e�05 2.2 0.139
DistanceCo : corridor type ¼ river �1.5e�05 2.5e�05 0.4 0.546
DistanceCo : corridor type ¼ road & river �4.0e�05 5.2e�05 0.6 0.441
DistanceCo : corridor type ¼ road & power line �2.1e�04 3.8e�04 0.3 0.583
DistanceCo : corridor type ¼ power line & river �2.1e�05 4.6e�05 0.2 0.658

Notes: ‘‘:’’ stands for first-order interactions. Linear feature combinations are indicated with a ‘‘&’’ between them. For a
description of the variables, see Methods.
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APPENDIX B

Table B1. Predicted step selection probabilities (P) from Eq. 1 and sample size (no/nr) for moose crossing, moving

along or away from roads, power lines, rivers in response to forest versus open habitat and the alignment of

linear features along contour lines in central Norway in the period April–December.

Statistic

Crossing Moving along Moving away�

Rd Pl Ri Rd Pl Ri Rd Pl Ri

Forest
Not aligned to contours
P 0.24 0.36 0.26 0.39 0.32 0.37 0.37 0.32 0.36
no 316 455 253 19,356 5,394 11,075 18,180 5,478 10,363
nr 1,813 1,526 1,220 46,223 13,971 26,061 42,063 12,417 23,816

Aligned to contours
P 0.22 0.28 0.24 0.40 0.38 0.39 0.38 0.34 0.37
no 1,199 472 1,101 70,458 7,985 53,229 62,554 6,328 46,770
nr 8,150 2,085 5,882 141,813 17,543 104,801 137,083 15,932 102,337

Open
Not aligned to contours
P 0.36 0.39 0.36 0.32 0.29 0.32 0.32 0.32 0.32
no 279 11 82 2,189 163 1,044 2,078 154 1,014
nr 1,005 39 287 7,230 724 3,578 6,556 644 3,422

Aligned to contours
P 0.35 0.31 0.33 0.33 0.35 0.34 0.32 0.34 0.33
no 634 10 212 5,875 305 3,726 5,316 290 3,201
nr 2,588 66 819 18,289 1,153 10,947 17,071 1,183 10,846

Notes: Predictions were made from the Combined model (equivalent to Appendix A) testing for the effects of environmental
variables as well as barrier and corridor effects of linear features on step selection of 145 moose using GPS relocation data. A
step selection probability below 0.33 indicates avoidance. The sample sizes are choice sets containing different types of observed
(no)/random (nr) movement steps.

� The sample sizes (n) are choice sets containing steps towards or away from linear features without crossing or moving
along them.

Table B2. Predicted step selection probabilities (P) from Eq. 1 and sample size (no/nr) for moose crossing, moving

along or away from combinations of roads, power lines and rivers in central Norway in the period April–

December.

Statistic

Crossing Moving along Moving away�

Rd/Ri Rd/Pl Pl/Ri Rd/Ri Rd/Pl Pl/Ri Rd/Ri Rd/Pl Pl/Ri

P 0.10 0.14 0.46 0.47 0.44 0.28 0.43 0.43 0.26
no 124 15 83 21,854 103 1,041 18,129 83 953
nr 1,875 74 236 41,972 257 2,102 40,062 202 1,986

Notes: Predictions were made from the Combined model (equivalent to Appendix A) testing for the effects of environmental
variables as well as barrier and corridor effects of linear features on step selection of 145 moose using GPS relocation data. A
step selection probability below 0.33 indicates avoidance. The sample sizes are choice sets containing different types of observed
(no)/random (nr) movement steps. The feature in combinations assumed closest to steps is named first.

� The sample sizes are choice sets containing steps towards or away from linear feature combinations without crossing or
moving along them.
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SUPPLEMENT

R script for analyzing the effects of environmental variables, linear features (roads, power lines,
rivers) and linear feature combinations on moose step selection (Ecological Archives, http://dx.doi.org/
10.1890/ES14-00278.1.sm).

Table B3. Predicted step selection probabilities (P) from Eq. 1 and sample size (no/nr) for moose crossing, moving

along or away from roads, power lines, rivers in response to forest versus open habitat and the alignment of

linear features along contour lines in central Norway in the period January-March.

Statistic

Crossing Moving along Moving away�

Rd Pl Ri Rd Pl Ri Rd Pl Ri

Forest
Not aligned to contours
P 0.24 0.35 0.24 0.38 0.33 0.37 0.38 0.32 0.39
no 48 111 34 4,125 1,702 1,870 4,127 1,751 1,878
nr 466 480 234 10,008 4,504 4,542 9,160 3,980 4,123

Aligned to contours
P 0.24 0.26 0.22 0.39 0.39 0.38 0.37 0.35 0.40
no 185 128 101 14,099 3,390 9,379 13,367 3,160 9,222
nr 1,682 865 1,050 29,005 7,481 19,454 28,078 6,960 18,987

Open habitat
Not aligned to contours
P 0.39 0.37 0.20 0.31 0.32 0.39 0.30 0.31 0.40
no 56 2 3 337 35 186 358 27 171
nr 214 18 53 1,305 197 666 1,184 185 597

Aligned to contours
P 0.38 0.28 0.18 0.32 0.38 0.41 0.30 0.35 0.41
no 100 4 15 847 98 684 771 94 674
nr 481 18 131 2,820 397 2,132 2,784 392 2,095

Notes: Predictions were made from Combined model (equivalent to Appendix A, but excluding the effects of linear feature
combinations) testing for the effects of environmental variables as well as barrier and corridor effects of linear features on step
selection of 142 moose using GPS relocation data A step selection probability below 0.33 indicates avoidance. The sample sizes
are choice sets containing different types of observed (no)/random (nr) movement steps.

� The sample sizes (n) are choice sets containing steps towards or away from linear features without crossing or moving
along them.
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